AN AM1 STUDY OF THE COPE REARRANGEMENTS OF BULLVALENE, BARBARALANE, SEMIBULLVALENE, AND DERIVATIVES OF SEMIBULLVALENE

Michael J. S. Dewar* and Caoxian Jie¹ Department of Chemistry. The University of Texas at Austin,
Austin, Texas 78712

(Received in USA 15 December 1987)

Abstract: AMI calculations are reported for the Cope rearrangements of $[3,3,2,0^{2,8}]$ tricyclodeca-3,7,9-triene (bullyalene; 6), $[3,3,1,0^{2,8}]$ tricyclo-nona-3,7-diene (barbaralane; 7), $[3,3,0,0^{2,8}]$ tricyclonona-3,7-die place via typical aromatic pericyclic transition states, unlike chair Cope rearrangements but like the boat rearrangement of 1,5-hexadiene. A second biradicaloid transition state of higher energy was found for 6 and 8. CN or F in 8 at C_2 , C_2 , C_3 , or C_4 is predicted to accelerate the reaction.

Introduction

The mechanism of the Cope rearrangement² of 1,5-hexadiene (1) and its derivatives has aroused much interest recently because of its implications³ concerning the theory of pericyclic reactions⁴. Cope himself formulated² it as what would now be called a synchronous pericyclic reaction and this
interpretation was reinforced by the analysis of pericyclic reactions by
Woodward and Hoffmann³ and by the recognition⁵ of the role of aromaticity in cyclic transition states (TS). The Cope rearrangement seemed indeed an
archetypal example of an "allowed" pericyclic reaction taking place via an aromatic TS (2). The only remaining ambiguity, concerning the chair or boat conformation of the TS, was settled in favor of the chair by Doering and Roth⁶.

In 1971 Doering et al⁷ suggested an alternative nonsynchronous mechanism in which formation of the new (C, C) bond precedes rupture of the old (C, C) one, the TS being a species formally representable as the 1,4-cyclohexylene biradical (3). This mechanism was strongly supported by experimental⁸ and theoretical⁹ work here, to a point where there seemed little doubt concerning its
correctness. Our calculations⁹, and thermochemical considerations⁷, indicated, its however, that the symmetrical intermediate (SI) is not a genuine biradical. It is a biradicaloid, i.e. a closed shell "nonclassical" species derived from a biradical by a weak coupling between the radical centers. The coupling here
involves through-bond^{10,11} interactions which lead to a lengthening of the
forming/breaking bonds (C_cC and C_cC) in 3 and shortening of the interpretation has been challenged on the basis of ab initio calculations¹² and studies of deuterium isotope effects¹³, the arguments adduced are open to criticism¹⁴, and a further detailed AM1 study ¹⁴ of the chair Cope rearrangements of 1 and of a number of its derivatives seems to have established that these reactions do in fact take place by the Doering mechanism.

If the chair and boat Cope rearrangements of 1 have similar mechanisms, they should have similar entropies of activation, as was indeed predicted by both our theoretical treatments. The experimental value $(-3.0 \pm 3.6 \text{ e.u.})$ found by Goldstein and Bonzon¹⁵ for the boat rearrangement was, ho less negative than that for the chair $(-13.0 \pm 0.1 \text{ e.u.})$. It has moreover been confirmed recently by Doering and Troise¹⁷. This discrepancy was disturbing because our procedures seem to reproduce entropies very effectively¹⁷. It seemed unlikely that the boat and chair rearrangements of 1 could in fact take place by the same mechanism.

The aromatic and biradicaloid mechanisms for the rearrangement of 1 can be distinguished by the lengths (r) of the C_C and C_C bonds in the symmetrical (C₂) intermediate (SI). If this is a typical aromatic pericyclic species,
analogy suggests that r should be ca 2.0 A. In the corresponding biradicaloid, r should be little greater than the length (1.54 Å) of a C-C single bond, the lengthening being due to the through-bond coupling between the radical centers
(C abd C). The value predicted by AM1 was 1.65 Å. While the value claimed in ab^2 initio calculation⁸ referred to above was 2.04 A, this did not refer to a properly optimized geometry,

A further AM1 study¹⁸ of the boat and chair rearrangements of 1 led to an Unexpected resolution of'thfs anomaly. In each case we found a **secand** genuine TS with the structure expected for the aromatic mechanism, the lengths of the relevant CC bonds being 1.98 Å (boat) and 1.99 Å (chair). The calculated entropy of actfva&i~~ for the aromatic boat mechanism (-6.3 e,u.> agreed **wtth** experiment^{15,16} to within the claimed error limits. While the activation energy for the aromatic chair rearrangement was greater by 6.5 kcal/mol than that for the preferred biradicaloid path, the difference **for the boat** was much less (2.8 kcal/mol), Given the difference in entropy of activation, the aromatic path is predicted to be favored at the temperature used in the kinetic study. Given the limited accuracy of AM1 energies and the situation concerning the entropies, it seems clear that the boat **and** chair rearrangements of 1 must indeed take place by different routes, the former by a synchronous pericyclic mechanism and the latter by a nonsynchronous biradicaloid one.

The prediction, that the Cope rearrangement of l can take place by two distinct paths, involving different mechanisms and yet having TSs with such similar geometries, was very surprizing and has important mechanistic implications. Many other pericyclic reactions offer a similar choice between alternative synchronous and nonsynchronous mechanisms, involving, respectively, aromatic and biradicaloid TSs. It has been commonly assumed that such reactions in fact take place by a spectrum of **mechanisms** involving a continuous gradation of TSs from one extreme to the other¹³. Our results suggest that this is not the case. If the Cope rearrangement takes place by one or other of two distinct mechanisms, rather than by a graded series of intermediate mechanisms, it seems likely that the same will prove true in all cases of this kind, given that the pairs **of** TSs are usually much less alike than they are for the Cope, Dewar et: al. have indeed presented arguments¹⁹ to this effect in the case of the Diels--Alder reaction,

The Cope rearrangements of bullvalene (6), barbaralane (7)# and semibullvalene (8) have aroused much attention, partly because of theLr extraordinary facility and partly because of the remarkable way in which 6 excluding complete sure particular vectors of the complete strain of the complete real control of the low inter activation energies are especially noteworthy since they necessarily take place by the normally less favored boat mechanism.

Further interest was aroused by calculations²¹ calculations²¹ which sure that certain which certain derivatives of 8 minutes of 8 minutes of 8 minutes of 8 minutes and 1988. bishomobenzenes (ll), the TS for the normal aromatic rearrangement of 8 becoming bishomodenzenes (1) , the is for the hormal aromany far from reliable and a becoming more stable than σ itself. Himbu/*L* was, nowever, iar from ferrable and a calculation using mNDU² led to an activation energy for 8 that was far too uarge. Errors of this kind commonly occur in cases where the is contains $unusu$ ily long bonds, que to the tendency of mNDU to overestimate interatomic repulsions between atoms separated by more than call. Thes the corresponding $\frac{1}{2}$ covalent bond distance²³. The calculated²² lengths of the forming/breaking CC bonds in the TS for rearrangement of 8 fell in this area.

Recently Miller et al²⁴ have reported a MNDO-CI study of the rearrangements of 8. and a number of its derivatives which supported the earlier conclusions²¹ and also led to a good estimate of the activation energy for 8 itself. However, these **calculations are: also subject to uncertainty because open** shell versions of MNDO tend²⁵ to overestimate the stabilities of biradical-like species²⁶. The two errors might have cancelled in the case of 8, leading to a fortuitous agreement with experiment. The geometry calculated for the SI does indeed indicate. % biradical **structure with** little or no bonding betwesn C and C or C and C₂. As noted above, the thermochemical evidence contradicts this conclusion.

Since these reactions were of interest to us as further examples of boat Cope rearrangements, we **decided** to carry out AM1 calculations for them.

Procedure

The calculations were carried out using the standard $AM1²⁷$ procedure as implemented in the AMPAC program²⁸. All geometries were completely optimized without making any assumptions, TSs were **located by the reaction coordinate** method²⁹ and refined by minimizing the scalar gradient of the energy³⁰. Stationary points were characterized by calculating force constants³⁰. Open **shell calculations were carried out using the "half electron" version of** AM1 with 3x3 CI (AM1-HE-CI). Options for all these procedures are included in AMPAC.

Results and Discussion

Calculations were carried out first fox 6, 7, **and** 8. **Their calculated** heats of formation and geometries are shown in Figure la-c, available experimental values being listed in parentheses. The agreement between the calculated and **observed** CC **bond** len **ths** mental value (1,600 **f** in 6 is satisfactory, except for CC **where the experf-**) seems unreasonably large. As a check: ***calcufations wore also carried out for I.-cyanosemibullvalene** (9) **for** which an experimental geometry is also available³¹. As Figure 1d shows, the agreement here is better, except for the C-C **bonds where the experimental value (1.321** A) seems **improbably small.**

AHf, 84.3

iur

Figure 1

For Γ i. Calculated (observed) bond lengths (iii) and heats zrf for Γ for Γ **figure 1. Calculated (observed)** bond lengths (A) and heats of formation (ΔH ; kcal/mol) for (a) semibullvalene; (b) barbaralane; (c) bullvalene; (d)
1-cyanosemibullvalene. Experimental values: (a) Y. C. Wang and S. F. Bauer, J. Am. Chem. Soc. 94, 5651 (1972); (c) B. Anderson and A. Marstrander, Acta Chem. Scand. 25, 1271 (1971); (d) L. A. Paquette, W.

The Cope rearrangements of 6 and 8 were each found to take place by two distinct alternative reaction paths involving different SIs and TSs, one SI being a bishomobenzene (10 or 11) and the other a biradicaloid (12 or 13). In the case of 7, only the aromatic SI *(cf, 10) was* located. The heats of formation (AH) of the SIs and TSs are listed in Table I. Since the differences in energy between corresponding SIs and TSs were negligible (<< 0.1 kcal/mol), the results show only that each of the minimum energy reaction paths (MERP) is very flat in the vicinity of the SI. For all practical purposes, the SIs can be regarded as the overall TSs. Table I shows the lengths in them of the CC bonds directly involved in the reactions, Single point HE-CI calculations for the stationary points led to a lowering of lo-15 kcal/mol in the energy, This indicates that none of these species has a high degree of biradical character and that the RHF energies should be accepted²⁶. The intermediates in the Doering mechanism are thus predicted to be closed shell species, i.e. biradicaloids rather than biradicals, in agreement with the thermochemical arguments⁷. Similar comments apply to the afomatic SIs. Their calculated geometries (Table I) indicate that the CC and CC bonds in them are quite strong. They do not contain pairs of $weak1\frac{2}{V}$ interacting allyl radicals.

In the boat rearrangement of I, the aromatic TS was higher in energy than the biradiealoid **TS** by 2.1 kcal/mol, In that of 6 or 8, it was lower, by 12.7 and 15.9 kcal/mol, respectively; see Table I. This difference is not surprizing in view of the accompanyfng changes in strain energy. Conversion of 6 to 10, or of 8 to 11, leads to relief of most of the ring strain in 6 or 8 whereas formation of 12 or 13 involves the formation of an additional cyclopropane ring, The strain in the eyclopropane ring(s) is' reflected by the lengths of the forming/breaking bonds in the SIs, those in 12 (1.77 A) and 13 (1,74 A) being greater than that in the biradicaloid boat SI from 1 (1.65 Å) while those in 10 (2.19 Å) and 11 (2.24 Å) are likewise greater than that in the aromatic boat SI from 1 (1.99 A).

The fact that 12 and 13 are predicted to be stationary points on the PE surfaces is interesting. It strongly supports our earlier¹⁸ conclusion, that Cope rearrangements take place by one or other of two distinct paths rather than by 8 gradian series care place by one of our care of the discreption of the biradicaloid ... mechanism is very unfavorable, it nevertheless corresponds to a distinct reaction path with an independent TS.

tl'abfe 1, Cope Rearrangement **of** Bullvalene, Barbaralane, and savie i: oope ne
Semibulleelene

(a) Calculations for aromatic (aro) and bfradicalaid (birad) symmstxical (a) Calculations $\hbox{\tt Intermediates}\,,$ (b) Calculated heat of formation of the SI ((c) Observed activation energy (kcal/mol). (a) A. Allerhand and H. 87, 4092 (N S), 4092 $S.$ Gutowsky, J. Am. Chem. Soc. 87, 4092 (1965). (e) W. von E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenstein, M. Jones, Jr., G. Klumpp, R. M. Rubin, and M. Saunders Tetrahedron 23, 3943 (1967).
(f) Ref. 33.

Table II, Enthelpies of Activation (kcal/mol) for Cope Rearrangement of Bullvalene, Barbaralane, and Semibullvalene.

(a) A. Allerhand and H. S. Gutowsky, J. Am. Chem. Soc. 87, 4092 (1965). (b) W. von E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenstein, M. Jones, Jr., G. Klumpp, R. M. Rubin, and M. Saunders, Tetrahedron 23, 3943 (1967). (c) Ref. (33).

Table II compares with experiment the enthalpies of activation calculated for the three aromatic Cope rearrangements. The errors are much larger than those so far encountered in AM1 studies of pericyclic reactions. Thus the errors in the AM1 ΔH^{\dagger} for the Cope rearrangements of 1 and several of its derivatives were all ca 3 kcal/mol and similar agreement with experiment was obtained for several Diels-Alder reactions²⁶ and for the electrocyclic conversion of cyclobutene to butadiene²⁷. An analogous situation was encountered in earlier MINDO/3 and MNDO calculations where the errors in the calculated $AH[†]$ were indeed even larger. While the reason for this is *not:* known, the errors for 6 (16.3 $kcal/mol$, 7 (15.3 kcal/mol), and 8 (14.9 kcal/mol), are almost identical, suggesting that they are due to some factor inherent in the ring system present in the SIs. Similar errors have been found in the heats of formation calculated²⁷ by AM1 for some other unsaturated ring compounds, e.g. fulvene (15.2 kcal/mol) and maleic anhydride (19 kcal/mol) . It therefore seems likely that a similar systematic error (+lS kcal/mol) will occur in AM1 calculations for such tricyclie hexadienes.

Early MINDO/2 calculations²¹ suggested that the Cope rearrangement of 8 should be facilitated by replacing the even numbered (see 8) carbon atoms by heteroatoms or by attaching π acceptor (+E) substituents (e.g. CN) to them. Hoffmann and Stohrer³² arrived at similar conclusions on the basis of EH calculations and qualitative arguments. Since the activation energy for the rearrangement of 6 itself is only 4.8 kcal/mol³³, that appropriate there is a clear implication substitution might make it. *negative,* the derivative of 11 existing as a stable 1 corresponding "nonclassical" bfshomobenzene. Hoffmann and Stohrer also concluded that electron releasing conjugative (-E) substit*uents,* in particular fluorine, at the even numbered positions in 4 should have the opposite effect, leading to an increase in the activation energy for rearrangement.

We accordingly studied the Cope rearrangements of twelve derivatives (14) of 8. Table III summarizes the results. The values reported in each case are the heat of formation (AH₂) of the parent molecule, the enthalpy of activation (ΔH^{\dagger}) , the heat of reaction for formation of the corresponding SI (ΔH_{ex}) , values Of %I. relative to that for 8, and the lengths **of** the relevant CC bo%s in the SI.

1 T

(all subseftuants **H** except as indicated) a, RI_, - CN b, $R_1 - R_2 - CN$ **8.** $R_{1-4} - CN$; **S** - **F c**, $R_1 = R_2 = CN$ **h**, $R_{1.4} = F$; **T** $d, s = cN$ $1, R$ $-CN: T-F$ $\begin{array}{ccc} \bullet & P & \bullet & \bullet & \bullet \\ \bullet & P & -F & \bullet & \bullet & \bullet \\ \end{array}$ e_i , R_{i-i} = F s f, s -F k, R = 00 r, $3 - F$

1, R - R - OCH; R - R - CN

Our calculated enthalpies of activation both confirm and quantify our earlier²¹ conclusion, that +E substituents in the even numbered positions of 8 should accelerate its Cope rearrangement. Thus the ΔH^{\dagger} calculated for the 2,4,6,8-tetracyano derivative (14a) is less than that for 6 by 8.0 kcal/mol and there is a similar difference (9.0 kcal/mol) between the corresponding pair of 1,5-difluoro derivatives, 14g and 14f. While the ΔH^* for 2,4- (14c) and 2,6-(14d) dicyanosemibullvalenes are likewise less than that for 6, the differences are, as expected, smaller (4.6 and 5.9 kcal/mol, respectively).

The species of major interest are of course the SIs. For reasons indicated earlier, the errors in the corresponding ΔH are expected to be the same for all reactions of this kind, being ca 15 kcal/mol. Correspondingly corrected values (AH["]) are shown in the fifth column of Table III. Those for 14a and 14g are predicted to be negative, implying that the parent molecules are higher in energy than the corresponding "nonclassical" species derived from 11.

Compound	ΔH,	AH ^{tb}	$\Delta H_{SI}^{\; \alpha}$	$\Delta H_{SI}^{\star d}$	r_{28}^{\bullet}	
8	84.5	$(19.7)^t$	19.7	(4.8)	2.242	1,395
14a	220.9	11.7	9.9	-5.0	2.329	1,400
14 _b	149.4	15.1	14.6	-0.3	2.283	$1.392(1.404)^{8}$
14 _c	149.7	13.8	12.8	-2.1	2.298	$1.396(1.399)^{8}$
14d	146.3	$(20.8)^{2}$	20.8	$+5.9$	2.238	1.401
14e	-89.5	11.7	9.0	-5.9	2,368	1.402
14f	-7.8	$(22.3)^t$	22.3	$+7.4$	2.237	1.405
14g	137.6	13.3	12.1	-2.8	2.325	1.412
14 _h	-9.9	13.4	11.6	$-3,3$	2.357	1,400
14i	145.2	12.7	12.4	-2.5	2.339	1.401
14j	-0.8	$(21.5)^{f}$	21.5	$+6.6$	2.230	1.394
14k	-60.5	12.9	10.5	$-4, 4$	2.374	1,402
141	78.3	11.0	7.0	-7.9	2.365	1,400

Table III. Cope Rearrangements of Semibullvalene Derivatives

(a) Heat of formation; (b) Enthalpy of activation; (c) Heat of reaction for formation of symmetrical intermediate (SI); (d) ΔH^c corrected (see text) (and) kcal/mol; (e) Bond lengths (A) in SI; (f) SI^S is the transit (g) Value in parentheses for bond adjacent to CN.

In the case of the tetracyano derivative (14a), this result agrees with our earlier prediction²¹ and with that of Hoffmann and Stohrer³². Hoffmann and Stohrer³² also predicted that π donor substituents, in particular fluorine, at even numbered positions in 4 should retard its rearrangement. Our the calculations lead, however, to the opposite conclusion, x predicting 14e to be another "nonclassical" bishomobenzene. Indeed, the ΔH predicted for 14e is even more negative than that for 14a. Similar remarks apply to the 2,4,6,8-tetramethoxy derivative (14k), though here the predicted difference in energy between the classical and nonclassical structures is less than for the cyano and fluoro analogs.

Our calculations predict cyano and fluoro groups at the odd numbered positions in 6 to hinder its Cope rearrangement; compare 14d, 14f, and 14j with 6; 14g and 141 with 14a; and 14h with 14e. Here again the predictions for CN agree with those of Hoffmann and Stohrer while those for F do not. The equilibrium between 1- and 5-monosubstituted semibulivalencs is of interest in this connection. Table IV shows the heats of formation calculated for three such pairs of "Cope isomers" (e.g. 10, 15). The results predict the favored isomer in each case to be the one where the substituent is attached to the cyclopropane ring, in agreement with experiment in the case of CN and CH₂. While no data are available for the fluoro derivative, the available evidence³⁴ seems to suggest that fluorine normally has a destabilizing effect on cyclopropane. A study of the equilibrium for the 1(5)-fluorosemibullvalenes would clearly be of interest.

Substituent	Heat of formation (kcal/mol) $1 - X$	$5 - X$	Obs. equilibrium $constanta$ (temp)
CN	116.9	118.8	95 $(25)^{b}$
CH ₃	78.5	79.9	$3(36)^c$
F	40.4	41.6	٠

Table IV. Energies of Isomeric Semibullvalenes

(a) Equilibrium constant for $5-X-8 \rightarrow 1-X-8$.

(b) L. A. Paquette, W. E. Volz, M. A. Beno, and C. G. Christoff, J. Am. Chem. Soc. 97, 2562 (1975).

(c) D. R. James, G. H. Birnberg, and L. A. Paquette, J. Am. Chem. Soc. 98, 2562 (1976).

As noted above, early MINDO/2 calculations²¹ led to the prediction that the nonclassical isomer (11) of 8 should be stabilized relative to 8 by replacing carbon atoms in the aromatic ring of 11 by nitrogen. We therefore carried out
calculations for 2,4,6,8-tetraazasemibullvalene (16) and 3,5-diazasemibullvalene (17) and for their Cope rearrangements. The results are shown in Table V.

Table V. Cope Rearrangements of Azasemibullvalenes.

(a) For notation, see Table II. (b) Bond lengths in reactant (r_{ij}) and SI (r_{ij}^*) .

Table VI. Atomic Charges in Rearrangement of Semibullvalene.

The basis of the original prediction²¹ was that the even numbered carbon **atoms in 8** *became* more negative in the corresponding SI. As T&ble VI shows, the atomic charges predicted by AM1 follow the same pattern, both in the TS and in the SI. Other things being equal, thts should certainly imply, according to PM0 theory, that replacement of these atoms by nitrogen should stabilize 11 relative to 8. However, the ΔH_{\perp} calculated by AM1 for the 2,4,6,8-tetra-aza derivative (16) is greater than that for 8 by no less than 13.4 kcal/mol. The effect of the **change** in electronegativity is presumably outweighed by the differences in bond energy between the bonds that are formed and broken during the reaction (CN and NN bonds in 16 vs. CC in 8) and the different strain energies of .the three- membered rings fdiazane in 16 vs. cyclopropane in 8). It seems in any case **very** unlikely that 16 can exist as a nonclassical bishomoaromatic species.

Strangely enough, the situation is exactly reversed in the' case of the 3,5-diaza derivative, 17. Here the relevant atoms (C and C) are predicted to be less, negative in the SI (11) than in 8 itself; yet the calculated ΔH_{max} for 17 is less than that for 8.

Acknowledgements: This work was supported by the Air Force Office of Scientific Research (AF86-0022) and the Robert A. Welch Foundation (F-126).

References

1) On leave from Lanzhou University, Lanzhou, The People's Republic of China. 2) M. J. S. Dewar J. Am. Chem. Soc. 106, 209 (1984). 3) R. 8, Woodward and R. Hoffmann Angew. *Chem. Int. Ed.* 8, 781 (1969). 4) A. C. Cope and E. M. Hardy J. Am. Chem. Soc. 62, 441 (1940). 5) M. G. Evans and E. Warhurst Trans. Faraday Soc., 34, 614 (1938). 6) W. van E. Doering and W, R, Roth *T8trah8dron X8,* 67 (1962). 7) W, von E, Qoering, V. G, Toscano, 6, H. Beasley *Tetrahsdrcm 27, 299 (1971),* $8)$ M, J, S, Dewar and I, E., Wade, Jr., I, Am, Chem, Soc., 99, 4417 (1977). 9) *M, J. S.* Dewar, C, P, Ford, M, L, McKee, H. S. Rzepa, and L, E. Wade, Jr. j, Am. *Chem, Sot. 99,* SO69 (1977), 10) R. Hoffmann, A. Imamura, and W. J. Hehre, J. Am. Chem. Soc. 90, 1499 (1968). 11) M. J. S. Dewar J. Am. Chem. Soc. 106, 669 (1984). 12) Y. Osamura, S. Kato, K. Morokuma, D. Feller, E. R. Davidson, and W. T. Borden J. Am. Chem. Soc. 106, 3362 (1984). 13) J. J. Gajewskf and N. I). Conrad J. &. *Chein. sot.* 100, 6268 (1978); 101, 6693 (1979); 14) M. J. S. Dewar and C. Jie J. Am. Chem. Soc., in press. 15) M. J. Goldstein and M. S. Benzon J. Am. Chem. Soc. 94, 7147 (1972). 16) M, J. S. Dewar and G, P. Ford J, Am. *Chem. Sot, 99,* 7822 (1977). 17) W. von E. Doering and C. A. Troise J. Am. *Chem. Soc.* 107, 5739 (1985). 18) M, J. S, Pewar and C, Jie, J. *C-hem. Sac. Chem. Common.* 19, 1451 (1087) . 19) M, 3. S. Dewar, S. Olivella, and J, J, P, Stewart J. Am. *Chem. Sac,* 108, 5771 (1986). 20) W. von E. Doering, Zh. Vsesayuz, Xhfm. Obshchestva fm D. 1. Mendelleeve, 7, 207 W. VOII E.
2002/1069\ 21) M. J, S. Dewar and W, W, Schoeller J. Am, Cfiero. Sot. 93, 1481 (1971), 21) H. O. O. Dewal and
00) Unpublished work. 23) M. J. S, Dewar and W, Thiel, J. Am. *Chem.* **Sm.** 99, 4899, 4907 (1977). 24) R. S. Mewar and W. mier, J. Am. Diemersters, J. Am. Charles Soc. 24) L. S. Miller, K. Grohman, and J. J. Dannenberg, J. Am. Chem. Soc. 105, 6862 (1983). 25) These comments admittedly apply only to the methods we ourselves have 25) These comments admittedly apply only to the methods we ourselves have used, i.e. the UHF version and the RHF and HE versions, with and without
3x3 CI. 26) See eg, M, J. S. *Dewar,* S, 0livella, and J. J, P. Stewart, J, Am, *Chem. L*₀ See e.g. n. J. S. 1 200. IUS, 3//1 (1986).
Control of Financial Control of Financial J. D. Stewart. 27) M. J. S. Dewar, B. G. 20e01scn, 28) **Am. Chem. Soc. 107, 3902 (1985)**, Program No, 506, Program No, 5 29) M, J. S, Dewar and S, Kirschner J, Am. *Chem. Sot. 93,* 4290 (1971)- 29) M. J. S. Dewar and S. Kirschner J. Am. Chem. Soc. 93, 4290 (1971). 30) J. W. McIver and A. Komornicki J. Am. Chem. Soc. 94, 2625 (1972). 31) L. A. Paquette and W. E. Volz J. Am. *Chem. Soc.* 98, 2910 (1976). 32) R. Hoffmann and W.-D. Stohrer J. Am. Chem. Soc. 93, 6941 (1971). 33) A. K. Chang, F. A. L. Anet, J. Mioduski, and J. Meinwald J. Am. Chem.
Soc. 98, 5014 (1976).

34) See W. R. Dolbier, Jr., Acc Chem. Res. 14, 195 (1981).

1358